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Example: Why Evaluation is Hard”?

38 recently proposed authentication
systems had no common reporting practice
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Performance Metrics
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All models are wrong, but
some are useful
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Frequency count

Where are the Mistakes?
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Thresholds Matter
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We Propose: Frequency Count of Scores (FCS)
can help

e The distribution of scores
plays an important role in the
system performance

e The potential for error is
directly proportional to the
width of the score overlap

e The FCS can be used to

identify problems with scoring
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Wait? Where Does All This User Data Come From?
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Frequency count

Wait? Where Does All This User Data Come From?
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Common: Is your cure, treatment or
system effective (and better than

_before)? y
Why Most Published Research Findings Are False
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Effective: We Got High Accuracy
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Sample bias -> Accuracy unreliable
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Sample bias -> Accuracy unreliable

Samples 2000 split 50% Samples 2000 split 10%
40 | B Unauthorized Users B Unauthorized Users
- 3 Authorized Users T 50 [ Authorized Users
= =3
S 30 S
> >
z =
o 20 [
3 =3
=3 =3
Y10 2
. e
o -3 -2 -1 0 1 2 3 4
1.0 — .~ Score
@ .
4= s
508 Because of sample bias
206 X > 0.6
= P =
0 N 0 .
0 0.4 . 0 0.4
a . a
Q i - ()] ~
|§°-2 — ACC 0.603 50-2 — ACC 0.900
0.0 . . . — 0.0 . , | B
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

34



Sample bias -> Accuracy unreliable

Samples 2000 split 50% Samples 2000 split 10%

[
o

40 | B Unauthorized Users B Unauthorized Users
- 3 Authorized Users t 50 [ Authorized Users
= =]
O 30] S a0
o 3 30
c c 1
g 20 o
o \Q 29‘
o
1™
TR

They are the
same system!

=
[

3

T 0.8

-

2 0.6 A

et

0 [

° 014‘ ° 0.4'

o a

0 . = 0 ~

Eo.z — ACC 0.60 Eo.z — ACC 0.900
0.0 . . . — 0.0 . , | B

00 02 04 06 08 10 00 02 04 06 0.8 1.0

False Positive Rate False Positive Rate



Summary so far

We propose reporting ROC and FCS to
Increase transparency
No common reporting practice across

surveyed systems
o 36 out of 38 proposed systems had flaws in

reporting
Poor performance reporting impedes
system comparison and replication
Common metrics (e.g. accuracy, EER)
can be misleading and hide
performance tradeoffs

True Positive Rate

—— EER 0.297, AUC 0.786, MAX ACC 0.730

04 06
False Positive Rate

EER 0.297, AUC 0.786, MAX ACC 0.730

I Unauthorized Users
[ Authorized Users
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TL;DR
Testing with low participant counts does not identify
the limits of system performance

A
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Two types of systems studied
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Not Really
Two types of systems studied Multi-Class

classification
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Not Really

Two types of systems studied

We will focus on user identification systems, but some of the

Multi-Class

analysis holds for the broader class of problems.
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Problem: Testing with too few participants
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OTHERS [24] [28], [56], [60], [59]




Problem: Testing with too few participants

1—
08 7 .
0.6
0.4
0.2 ! User Identification

' e Multiclass Identificaiton

0 ....... | 1 L 1

0 10 20 30 40 50
Participants #
We su rveyed Venue Case 1: User Identification Case 2: Multiclass Identification
IMWUT/UBICOMP | [55], [49]. [67]. [26]. [61]. [621. [13] | [31]. [52]. [631. [691. [57]. [65], [43]
30 proposed CHI [46], [38], [45] [66], [39], [64], [47], [34]
systems UIST 5], [22]. [33]
OTHERS [24] [28], [56], [60], [59]




Problem: Testing with too few participants
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Accuracy

What Is Going On? (simplified)
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Accuracy
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Hammer Time

. What if...

. ... We Just took some arbitrary
datasets of humans and used
artificial intelligence on them?



Building 5 example user identification systems

e 3 criteria to selecting datasets:
o Have a unique identifier for each participant
o Have at least 20 participants
o Have more than one measurement per participant

e 3 most popular classification algorithms

o Support Vector Machine (10 EQ’ dentifcation

o Random Forest g I Miticlass Identification

o Neural Network 25

e 10 iterations with randomly selected 3
participants O4
o We did the minimal amount of tuning | 2| HI J
necessary to generate output 0 i

5QV‘\ (}0@‘5 e‘\\“o* \§ 0’\\“ O’«\e‘
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Building 5 example user identification systems
« We performed the minimum tuning possible
for each system

« We report two metrics
> confusion matrix (not shown)

o accuracy (ACC)

EEG NBA Act. Walking CT
Stat.  Recogn. Act. Scan

Neural Network | 0.5122 0.9452 0.8153 0.5901 0.9996
Random Forest | 0.5176 0.9583 0.9246 0.7119  0.9992
SVM 0.3297 0.7945 0.7875 0.5679  1.0000
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) With minimal tuning 3 of/

” ption systems
" each system

the systems achieved

2 accuracy > 90%

/

LT & Walki
Stat Act. an

Neural Network

Random Forest
SVM

051 0.9452 08\153 0.5901 0.9996
051 0.9583 0.9246  0.7119 0.9992

0.3297 0.7945 0.7875  0.5679  1.0000
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Building 5 example user identification systems

-~

\_

A favorable combination of algorithm and dataset can
inflate the performance values significantly, making the
classification artificially easy

~

96%

92%

100%

EEG NBA Act. Walking CT
Stat.  Recogn. Act. Scan
Neural Network | 0.5122 0.9452 0.8153 0.5901 0.9996
Random Forest | 0.5176 0.9583 0.9246  0.7119 0.9992
SVM 0.3297 0.7945 0.7875  0.5679  1.0000
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Each system fails at a different point

Accuracy
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—&)- Random Forest - NBA Stat. - Max IQR 0.0483
Random Forest -CAT Scan - Max IQR 0.0022

=4~ Random Forest -EEG - Max IQR 0.0399

/For three of the datasets we\

had 80+ participants. We
increased participant count
for the Random Forest
@Igorithm.
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Accuracy

Each system fails at a different point
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J
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Accuracy

Each system fails at a different point
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J
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amount of information
0.5
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Accuracy
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Each system fails at a different point

/If we test only up to this I
point, we cannot know
how the system will

perform outside the
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What To Do?

. Clearly, 20 is not a good participant count
although often used.

. Unfortunately, there is no correct number.

. Power analysis does not work.

61
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We Propose: Recruit Until It Fails

—&- Random Forest
A" SVM
- Neural Network
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Accuracy

0.91

0.81

o
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We Propose: Recruit Until It Fails

.‘.

had 250+ participants
we tested all three
algorithms with

1‘L1rlhihjkuk.
ik, .

—&- Random Forest

SVM

One of the datasets \ < Neural Network

increasing participant
counts

Ak-p AA-A
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Size of participant subset, N
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Accuracy
o
~J

o
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Recruit until it fails

4 " Random Forest
Every algorithm eventually SVM

sees a degradation in Neural Network
performance on this dataset

/
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Size of participant subset, N



Accuracy
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0.5

We Propose: Recruit Until It Fails

—&- Random Forest
A" SVM
- Neural Network

Eventually, we will reach the limit on easily
identified users that can be provided by the
measurements regardless of algorithm

I~ TAT A A
"'""‘: AA-A
0 50 100 150 200 250

Size of participant subset, N

65



Accuracy
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We Propose: Recruit Until It Fails

—&- Random Forest
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- Neural Network

/

Each (algorithm, measurement)
pair fails at a different point.
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Keep
Testing

Accuracy

We Propose: Recruit Untit-Ht Fails

We don’t have to start with a
large participant count.
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Keep
Testing

Accuracy

0.81

o
~

We Propose: Recruit Untit-Ht Fails

We don’t have to start with a
large participant count.

\_

\

/

*- We can keep adding
participants until the
performance is below your
target.
‘r‘kikﬂrlklk‘r‘r‘l
0 50 100 150 200 250

Size of participant subset, N
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Summary: Recruit until it fails!

e \We show with 5 identification
systems
o Why small participant pools
are inadequate
o Upper limits on easily
identified participants
e New approach to participant
recruitment: recruit until it
fails

www.lindqgvistlab.org
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And now

for something
completely different...
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“Systems Security”




Not A New ldea: We Need Predictive Models

Making Social Sciences
More Scientific

5 :rt'tl‘;.‘,‘f‘.
General Relativityturns




You Are Welcome

Forgetting of Passwords: Ecological Theory and Data

Xianyi Gao', Yulong Yang', Can Liu’, Christos Mitropoulos, Janne Lindqvist’, Antti Oulasvirta”

"Rutgers University, "Aalto University
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Big Picture: What Is Common Between Medicine,
Interventional Behavioral Sciences and Security?

o
(@ELQS | MEDICINE BROWSE PUBLISH

Common: Is your cure, treatment or
system effective (and better than

_before) y
Why Most Published Research Findings Are False

John P. A. loannidis

Published: August 30, 2005 e https://doi.org/10.1371/journal.pmed.0020124



Thank Youl

This material is based upon work supported by the National
Science Foundation under Grant Number 1750987. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

Please visit our websites for more details:

lindqvistiab.org
scienceofsecurity.science
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