Science of Security: Authentication and Predictive Logical Models

Janne Lindqvist Human-Computer Interaction and Security Engineering Lab

> October 4, 2019 http://lindqvistlab.org

How Does Science Get Published?

How Does Science Get Published?

• Peer review

Big Picture

BROWSE PUBLISH

OPEN ACCESS

ESSAY

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

TL; DR: Performance reporting might surprise you

TL; DR: Performance reporting might surprise you

Example: Why Evaluation is Hard?

Example: Why Evaluation is Hard?

Metrics Are Related

Metrics Are Related

All models are wrong, but some are useful

Where are the Mistakes?

Mistakes

Thresholds Matter

Thresholds Matter

Thresholds Matter

We Propose: Frequency Count of Scores (FCS) can help

- The distribution of scores plays an important role in the system performance
- The potential for error is directly proportional to the width of the score overlap
- The FCS can be used to identify problems with scoring

Wait? Where Does All This User Data Come From?

Wait? Where Does All This User Data Come From?

Big Picture: What Is Common Between Medicine, Interventional Behavioral Sciences and Security?

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

Big Picture: What Is Common Between Medicine, Interventional Behavioral Sciences and Security?

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

Effective: We Got High Accuracy

Summary so far

- We propose reporting ROC and FCS to increase transparency
- No common reporting practice across surveyed systems
 - 36 out of 38 proposed systems had flaws in reporting
- Poor performance reporting impedes system comparison and replication
- Common metrics (e.g. accuracy, EER) can be misleading and hide performance tradeoffs

TL;DR Testing with low participant counts does not identify the limits of system performance

TL;DR Testing with low participant counts does not identify the limits of system performance

Two types of systems studied

Not Really Two types of systems studied

easuremen

Data

MACHINE

learning

User identification is a special case of multi-class classification where there each class corresponds to a specific user

Multi-Class

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 1

Not Really Two types of systems studied

Multi-Class classification

0.1 0.1 0.2 0.3 0.4 0.5 0.6

0.9

We will focus on user identification systems, but some of the analysis holds for the broader class of problems.

Problem: Testing with too few participants

Hammer Time

- What if...
- we just took some arbitrary datasets of humans and used artificial intelligence on them?

Building 5 example user identification systems

- 3 criteria to selecting datasets:
 - Have a unique identifier for each participant
 - Have at least 20 participants
 - Have more than one measurement per participant
- 3 most popular classification algorithms
 - Support Vector Machine
 - Random Forest
 - Neural Network
- 10 iterations with randomly selected participants
 - We did the minimal amount of tuning necessary to generate output

Building 5 example user identification systems

- We performed the minimum tuning possible for each system
- We report two metrics
 - confusion matrix (not shown)
 - accuracy (ACC)

	EEG	NBA	Act.	Walking	СТ
		Stat.	Recogn.	Act.	Scan
Neural Network	0.5122	0.9452	0.8153	0.5901	0.9996
Random Forest	0.5176	0.9583	0.9246	0.7119	0.9992
SVM	0.3297	0.7945	0.7875	0.5679	1.0000

Building 5 example user identification systems

A favorable combination of algorithm and dataset can inflate the performance values significantly, making the classification artificially easy

What To Do?

- Clearly, 20 is not a good participant count although often used.
- Unfortunately, there is no correct number.
- Power analysis does not work.

We Propose: Recruit Until It Fails

We Propose: Recruit Until It Fails

Recruit until it fails

We Propose: Recruit Until It Fails

We Propose: Recruit Until It Fails

Summary: Recruit until it fails!

- We show with 5 identification systems
 - Why small participant pools are inadequate
 - Upper limits on easily identified participants
- New approach to participant recruitment: recruit until it fails

www.lindqvistlab.org

"Systems Security"

Not A New Idea: We Need Predictive Models

You Are Welcome

Forgetting of Passwords: Ecological Theory and Data Xianyi Gao[†], Yulong Yang[†], Can Liu[†], Christos Mitropoulos[†], Janne Lindqvist[†], Antti Oulasvirta^{*} [†]*Rutgers University*, ^{*}*Aalto University* 30 8 days per login 7 days per login Average Login Duration (s) 57 57 57 57 $E[Time_{login}] \approx \frac{Kf^d(1-d)}{n^{1-d}} + E[Time_{act}]$ 6 days per login 5 days per login days per login 3 days per login 2 days per login 1 dav per login $R_o \approx e^{-\tau/s + C/s} (1-d)^{-1/s} f^{-d/s} n^{(1-d)/s}$ 10 20 30 0 5 10 15 25 Practice (nth login with the password)

Big Picture: What Is Common Between Medicine, Interventional Behavioral Sciences and Security?

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

Thank You!

This material is based upon work supported by the National Science Foundation under Grant Number 1750987. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Please visit our websites for more details:

lindqvistlab.org scienceofsecurity.science